596 research outputs found

    Aging and fluctuation-dissipation ratio in a nonequilibrium qq-state lattice model

    Full text link
    A generalized version of the nonequilibrium linear Glauber model with qq states in dd dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the qq states. Exact expressions for the two-time autocorrelation and response functions on a dd-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model

    Self-organized patterns of coexistence out of a predator-prey cellular automaton

    Full text link
    We present a stochastic approach to modeling the dynamics of coexistence of prey and predator populations. It is assumed that the space of coexistence is explicitly subdivided in a grid of cells. Each cell can be occupied by only one individual of each species or can be empty. The system evolves in time according to a probabilistic cellular automaton composed by a set of local rules which describe interactions between species individuals and mimic the process of birth, death and predation. By performing computational simulations, we found that, depending on the values of the parameters of the model, the following states can be reached: a prey absorbing state and active states of two types. In one of them both species coexist in a stationary regime with population densities constant in time. The other kind of active state is characterized by local coupled time oscillations of prey and predator populations. We focus on the self-organized structures arising from spatio-temporal dynamics of the coexistence. We identify distinct spatial patterns of prey and predators and verify that they are intimally connected to the time coexistence behavior of the species. The occurrence of a prey percolating cluster on the spatial patterns of the active states is also examined.Comment: 19 pages, 11 figure

    The fluctuation-dissipation theorem and the linear Glauber model

    Full text link
    We obtain exact expressions for the two-time autocorrelation and response functions of the dd-dimensional linear Glauber model. Although this linear model does not obey detailed balance in dimensions d≄2d\geq 2, we show that the usual form of the fluctuation-dissipation ratio still holds in the stationary regime. In the transient regime, we show the occurence of aging, with a special limit of the fluctuation-dissipation ratio, X∞=1/2X_{\infty}=1/2, for a quench at the critical point.Comment: Accepted for publication (Physical Review E

    Dynamic critical exponents of the Ising model with multispin interactions

    Full text link
    We revisit the short-time dynamics of 2D Ising model with three spin interactions in one direction and estimate the critical exponents z,z, Ξ,\theta, ÎČ\beta and Îœ\nu. Taking properly into account the symmetry of the Hamiltonian we obtain results completely different from those obtained by Wang et al.. For the dynamic exponent zz our result coincides with that of the 4-state Potts model in two dimensions. In addition, results for the static exponents Îœ\nu and ÎČ\beta agree with previous estimates obtained from finite size scaling combined with conformal invariance. Finally, for the new dynamic exponent Ξ\theta we find a negative and close to zero value, a result also expected for the 4-state Potts model according to Okano et al.Comment: 12 pages, 9 figures, corrected Abstract mistypes, corrected equation on page 4 (Parameter Q

    The Influence of the Interaction between Climate and Competition on the Distributional Limits of European Shrews

    Get PDF
    It is known that species’ distributions are influenced by several ecological factors. Nonetheless, the geographical scale upon which the influence of these factors is perceived is largely undefined. We assessed the importance of competition in regulating the distributional limits of species at large geographical scales. We focus on species with similar diets, the European Soricidae shrews, and how interspecific competition changes along climatic gradients. We used presence data for the seven most widespread terrestrial species of Soricidae in Europe, gathered from GBIF, European museums, and climate data from WorldClim. We made use of two Joint Species Distribution Models to analyse the correlations between species’ presences, aiming to understand the distinct roles of climate and competition in shaping species’ distributions. Our results support three key conclusions: (i) climate alone does not explain all species’ distributions at large scales; (ii) negative interactions, such as competition, seem to play a strong role in defining species’ range limits, even at large scales; and (iii) the impact of competition on a species’ distribution varies along a climatic gradient, becoming stronger at the climatic extremes. Our conclusions support previous research, highlighting the importance of considering biotic interactions when studying species’ distributions, regardless of geographical scaleinfo:eu-repo/semantics/publishedVersio

    Cumulants of the three state Potts model and of nonequilibrium models with C3v symmetry

    Full text link
    The critical behavior of two-dimensional stochastic lattice gas models with C3v symmetry is analyzed. We study the cumulants of the order parameter for the three state (equilibrium) Potts model and for two irreversible models whose dynamic rules are invariant under the symmetry operations of the point group C3v. By means of extensive numerical analysis of the phase transition we show that irreversibility does not affect the critical behavior of the systems. In particular we find that the Binder reduced fourth order cumulant takes a universal value U* which is the same for the three state Potts model and for the irreversible models. The same universal behavior is observed for the reduced third-order cumulant.Comment: gzipped tar file containing: 1 latex file + 6 eps figure

    Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics

    Full text link
    In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations for the magnetization and its moments at early stage of the dynamic evolution. Our estimates for the dynamic exponents, at the tricritical point, are z=2.215(2)z= 2.215(2) and ξ=−0.53(2)\theta= -0.53(2).Comment: 12 pages, 9 figure
    • 

    corecore